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ABSTRACT

A system of ordinary nonlinear differential equations, governing
the scalar and vector potentials associated with a one-dimensional
electromagnetic wave in a hot plasma, has been derived using a
properly constructed stationary solution of the nonlinear Boltzmann-
Vlasov equation in a moving reference frame. The propagation of the
transverse electromagnetic wave is considered for three cases: no
applied static electromagnetic field, a static magnetic field in the
direction of wave propagation, and static electric and magnetic fields
in the direction of propagation. ,

In the static field-free case, assuming electrical neutrality
and considering an electron temperature anisotropy in the plasma, the
derived dispersion relation indicates that the wavelength of the
transverse electromagnetic wave is amplitude dependent. In the second
case, the transverse electromagnetic wave appears as a circularly
polarized sinusoidal wave in a laboratory frame of reference. For
an electrically neutral plasma with a small-temperature anisotropy and
whose mean velocity in the direction of wave propagation vanishes, the
derived dispersiog relation reduces to the commonly guoted dispersion
relation for Alfven waves.

The influence of a static electric field along the direction of
propagation is studied and it is found that under small-amplitude and
weak static electric field conditions, the transverse electromagnetic
wave appears as an elliptically polarized plane wave in the laboratory
frame. The effect of the static electric field on the wavelength and
the Faraday rotation is investigated and discussed.
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NONLINEAR ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETOACTIVE FINITE

TEMPERATURE PLASMA

I. INTRODUCTION

The study of electromagnetic wave propagation in a plasma
has application in many diverse fields of physics such as, for example,
the interpretation of microwave diagnostic data obtained from laboratory
plasmasl’z’s, astrophysical problems such as the generation of cosmic
r-f radiation4, and the entire field of radio wave propagation in the
ionospheres’s. This wide range of interests in the basic problem has
led in recent years to many theoretical studies of plasma oscillations” ~13.
The only dynamical plasma phenomena that have been treated in a satis-
fying way are those describable in terms of small-amplitude departures
from uniform equilibria. Many, if not most, plasmas--both laboratory
and astrophysical--do not fit such a description. The number of
nonlinear problems which have been solved to date is rather limited. 1In
particular, two kinds of nonlinear plasma configurations have been
investigated. 1In the first, which is known as a "constant profile"
description, there exists a "wave" coordinate system in which all

quantities appear to be time-independent. A "laboratory" observer, in

general, would not view the phenomena from this particular frame, but

-

all macroscopic variables would appear tc have the form of C? - vot),
where the velocity ;; is a constant, and T and t are the position and
time variables respectively. The more usual approach is to study the

problem in a coordinate frame which moves with the velocity'7; and

refer the result back to laboratory coordinates at the end. The more
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general nonlinear problems involve situations in which no such preferred
frame exists; a simple example would be the steepening of nonlinear

sound waves according to the Euler equation14

The former approach has been used to study magnetosonic waves

15

1
in a cold plasma as well as the nonlinear Alfven wavesi®’ 17718,

Nekrasov'® has studied the steady-state nonlinear motion of an electron-

ion plasma by a similar approach. In the present paper an attempt is
made to study the interaction of plasma with a propagating electro-
magnetic plane wave in a wave frame, using the one-dimensional Boltzmann-

Vlasov equation and Maxwell's equations.

II. BASIC EQUATIONS

Consider a two-component plasma (positive ions and electrons) in
which the effects of collisions are assumed to be negligible. The
electron distribution function f(r,V,t) and the ion distribution function

F(r,V,t) for this plasma are governed by the Boltzmann-Vlasov equations

written as follows:

- — -,
§%+7~Vf—i(E+va)'va=O (1a)
and
- - -
V. w+EFvxD) VL = 0, (1b)

where m and M denote, respectively, the mass of the electron and ion, and
e is the electronic charge which is taken as a positive quantity.

The electromagnetic fields in the plasma are governed by the

Maxwell equations:




OB
fo = - 5% (Ea)
vXﬁ’=3’+%E , (2b)
V.D = p (2¢)
and
V.B = 0 (2a)

The electric displacement vector 5) and the magnetic flux density B are,
respectively, related to the electric field intensity f)) and the magnetic

field intensity K in the usual manner:

T = eof (3a)
and
E) = “Oﬁ ) (5b)

where €o and K denote the dielectric constant and the permeability
of vacuum respectively. The convection current density T and the

charge density p may be given in terms of the distribution functions as

7 ef7(F - £)a3v (La)

and

©
i

ef(F - £)a3v . (ko)

It is well known that the analysis of electromagnetic fields is often
facilitated by the use of auxiliary potential functions. A general
solution of the inhomogeneous system (Egs. 2) can be given as

followsZC:

3B 1

- -
E = -V(D—yt—%vXAo (58.)
and
= - aXo
B = VXA-HOSt—-Hqu)O s (5b)

where @ and A are the potentials of the source distribution which is

internal to the region under consideration, and <I>O and Ko are potentials
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of the source distribution which is entirely external to the region under

consideration. These potentials are subject to the following conditions:

OzR = -u? s
o)
1
oo = -~ P >
)
- o0
V. A+ K€o ST = o ,
OR = 0 ,
o
Oo¢ = 0
o
and V.R + € aQO = 0
o T Hoto 3t - ’

where the symbol O denotes the D'Alembertian operator defined by

2 2
O = V -ue é—— .

© 0 y¢2

Define an equivalent potential function'??'by the following

differential equations:

and
-
R OA
Vxa = -u SRV
o \ ot o ?

so that Eqs. 5 can be written as

;W
F = - - St
and
B = vxV s
where

(6a)
(6v)

(6c)
(Ta)

(7o)

(Te)

(74)

(8a)

(8b)

(92)

(9v)

(9¢)
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It should be noted that the set of Egs. 8,which is equivalent to the

set of Egs. Ta-c, can also be written as
O3 =0 and V+-3 = 0 . (10)

Postulate the existence of a moving frame of reference in which
all quantities of interest appear to be stationary, i.e., a transfor-
mation £ = (z - vot) is made to a moving coordinate system where vy
is a constant independent of t and 2, and thus £ is the distance
measured in this moving frame of reference. In the present one-
dimensional analysis. 1t is assumed that macroscopic quantities such

as the electromagnetic fields and potentials depend only upon £, while

the density distribution functions f and F are functions of & as well

as the particle velocities v Vy and VZ. Thus for

£ = (Z - Vot) b (ll)
Eq. 9a gives
dVX av a0 dVZ
E, = v, T Ey = v EEX and E, = - F tV g o (12a)
and Eq. 9b becomes
av dVX
= - X = —= B = .
B T By 7 end B, 0 (12v)

It is to be noted that the time-dependent electromagnetic field

components are related in the following manner:

o , (12¢)

i

EB +EB
XX vy
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which implies that E is perpendicular to B spatially.

With the aid of Egs. 4, Eq. 6a yields

d2A A
<? - ——-> o= e Jﬁji/ﬁvk(F - f)dvxdvydvz s (13a)
dt
e )
- = = -n e v (F - £f)dv_ dv dv 13b
<i =) M 4 )av,dv dv,
-00
and
A 7
- = = - - 1
<i > S uoeb/l/l/\vz(F f)dvxdvydvz s (13c)
ag
=00
whereas Eq. 6b becomes
2 o
v 2
<i .o j4&e L ng/i/l/j(F - f)dvxdv dv, (13a)
aes 0 y
-0
and Eq. 6c gives
dA v
Z o dd
—L .2 & 1
T L @ o, (13e)

where ¢ = l/‘Juoeo is the
On the other hand
of Egs. 12a and 12b:

u af ..d_&af +g
5_' m 4t 5;; m

and Eq. lb becomes

speed of light in vacuum.

Eq. la may be written as follows with the aid

av
y of
dE ov
y
ed_ (o \i v vy - o0 (ika)
m at -V " Vy'y T Yo'z’ 3y



av av
OF e x OF e y OF
uz< 5t "M a& Ov. M da Jv
X y
e 4 (0 -v.V. -vV_ -vV) oF _ 0 (14b)
M 4t X X vy oz Buz - ’
where u_ = (VZ - uo).

It is not difficult to show that the general solution of

Eq. 1lla has the following form:

£(8, vy Voo v,) = £(u, U, W), (15a)
where U = [vX - (e/m)vx],
v, = [vy - (e/m)vy],
W= 1/2m[vE + v§ + w2 - (U4 Ui)]+ e(v,v, - @) and

f is an arbitrary differentiable function of its arguments. Similarly,
the general solution of Eq. 14b has the form

U W) (15v)

F<§; VXJ Vy: VZ) = F(Uxi’ y

where Uxi [Vx + (eﬂmvil,

Uu. = v+ (e \ and
i [vy, + (e/M)V,]
— 2 2 2 _ 2 2 - v
W, = 1/2M[vX + vy +us (U‘xi + in) e(vofZ ®)].

It is obvious that once the forms of the distribution functions F and
f are known, then the integration in Egs. 13%a-d can be carried out.
Thus a set of differential equations governing the potentialij and

® can be derived.
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Suppose that the distribution functions are of the form

/ -1
= _ on 22 e - m
f(Ui’Uy’w) - Neﬂgi_ aeBeye} eXp [_ 2 (ani * 6eU§) - 7ew}

(l6a)
and
F(Uys5Up3oW,)
/2 -1
on 3 5
= NiI: Vaiﬁi7iJ exp [- 5 (0 U, + Bini) - 7iwi] ) (16b)
where
! 1 !
¢ =gt P T Y = xT
ex ey ez
! ! !
% =% P x> 7 = x>
ix iy iz

with K denoting the Boltzmann constant, and Tx’ Ty’ and TZ are the
temperatures corresponding to the directions along the three coordinate
axes. Then upon evaluating the integrals of Eqs. 13%a-d, with the aid

of Eq. 10, the following set of differential equations is obtained:

( v§‘> d2Vx
1 - = = peGV |, (17a)
c2 dgg o X X
2 2
v a=v
1

< -2 = uoeG v, (170)

- d§2 yvy




d2V Pni -ne
<l - —> = - keevNe - Ne > (17c)

ae2
and
2 -N. il
(1-——>d® = e—<N.e T oNe e> , (174)
2 € i e
dt o
where
o - [l = ]
X M Tiz/ n Tez/ © ’
eN, T. -N. eN T -1
G = -1 - _11\ R i e - -& e € ,
y M T, / m T
1Z ez

At VR SRR

N =
iz
and
T 2 T 2
1 [m ex) (e (1. _=x)(e
e = XT {5[( T \mvx> +\1_T><mvy>}+e<vovz-®)}
ez ez ez

where Ni and Ne are the constant number densities of ions and electrons
respectively in the plasma at some reference point & = éo.

The above set of nonlinear ordinary differential equations can
be solved in principle once the values of Vx’ Vy’ VZ and ¢ and their
derivatives with respect to ¢ are specified at £ = éo. It is of interest
to note that the vector potential may be denoted by V= A+a where 5.’
is that part associated with the incident electromagnetic wave and Iy

is that due to the motion of the charged particles in the plasma. Once

V and ¢ are known, then the electromagnetic field in the plasma can be

obtained from Eqs. 12a and 12b.
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For convenience a quantity (&) is defined by

o(8) = o(8) - vV (8) . (182)
Then
B, (8) = -5 (18b)

and Egs. 17c and 17d can be combined to give

2 =T -7
% _ e Niel-Nee>. (18c)
d§2 o €

Thus Eqs. 17a, 17b and 18c form a set of nonlinear equations which

must be solved for the potential functions. It is of interest to

note that when
Ty = Ty = T, @nd T, = T, =T (19)

Gx is equal to Gy, and Egs. 17a and 17b become respectively

<12vx azv
— = RV, and —21 = RV, (20)
dt dg
where
N T )
R, =——1—[02<1-T1—*>e 1+w2<1-T—eJ->ene} s
(c® - vi) P iz p ez
€o TiL e
[P, S 2 = 2 2 RS
Ny % ONKT. {Qp < T ><Vx + Vy>:| * T,
1 12 1Z 12
and
€o TeL e
- 2 _ &L 2 2 .
Ne = 2N KT ["’p < T > (Vx vy >] KT

ez ez ez
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: 2 _ 2 2 - 2
with w ) = (Nee /meo) and Qp (Nie /Meo).
Let p(&) be the amplitude and ©(t) the spatial angle between

the x- and y-components of the transverse magnetic field vector in

the system, i.e.,

p(E) = ,( B2 + B§ and O(¢) = tan_l<:§i-> ; (21)

then, with the aid of Egs. 20,

R_(€)
dp . © d (v +y2
3t 5p(E) (VX Vy) (22a)
and
R av av
ae o) X N
& 2 —= . . b
3E 2 <§y T Ve 3@ (22b)
On the other hand, from Eqs. 20,
—_— |V —— -V = [6) 2
dt \'y dt x dt > ’ (23)
which suggests that
R
40 0
— = —K 2L
dg 5 1 > ( )

where K is independent of £, equal to [Vy(dVX/dé)-Vk(dVy/dE)]: and can
1
be determined from the values of Vx’ Vy’ de/dE and dVy/dé at & = éo

Suppose that the condition of electrical neutrality is satisfied,

-, -1
Ne © = Ne © , N, = N_ and n; = 7n_ . (25)
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Then the right-hand side of Eq. 18c vanishes so that EZ must be
independent of £&. Although Ez may still contain the electrostatic
field, it is assumed to be zero in the present discussion. Consequently
©® is independent of &, i.e., ¢ = @O, a constant, which is taken to be
zero for convenience. Thus, under the conditions (Egs. 25), R, can be

expressed as

R = -LQ exp [ % Q(v2 + Vi)} , (26)

where N

and

It should be noted that a possible solution of Eq. 25 is the periodic

function of £, given in the form:

V., = V_sin k(E - go) and Vy = V_ cos k(& - éo) , (27)

where k and VO are constant and independent of E.

The transverse magnetic field then is cobtained from Eq. 12b as

(o¢]
li

N kV_ sin k(t - go) and By = kV_ cos k(E - go) . (28)

Since ¢

I

(z- vot) it is easily recognized that this form of solution
represents a propagating wave with a propagation constant k and angular

frequency w = kv_.  Furthermore (Vi + V;) = Vi is a constant so that

R 1is independent of £. From Eq. 22a dp/dt = 0, and from Eq. 22b
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d@/d§ is constant , which implies that the electromagnetic wave
propagating in the plasma is a circularly polarized wave. The propagation
constant k of the wave must be so chosen that Egs. 20 are satisfied.

Consequently k must satisfy the following relationship:

. (1/2)av2
k= = LQe , (29a)
which can be written as
1
(c®x® - 0®) = a)g exp <§ QV§> ’ (29}
where
Tiz o T 1
2 _ 2 el _
@) = <i o ( T %) . (29¢)
ez ez

It should be observed that Eq. 29b is simply the dispersion egquation

for the transverse electromagnetic wave propagating in the plasma.

ITI. PLASMA IN COMBINED ELECTROSTATIC AND MAGNETOSTATIC FIELDS

Suppose that the externally applied electrostatic and magnetostatic
fields are directed along the z-direction. For this case Egs. 14 must

be modified as follows:

ar e Yy 3 e Py ar
uz< 3 "m & v Th & 3V,
e d_ of e of of
+ i (o - VXVX - VyVy - VOVZ) a—g = = BO<VX yv; - Vy WX (30a)

and
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av av
OF e x OF e _y OF e d oF
uz<5g'ﬁ ECR T T '&,;)-M a (v - vy - Vo) S

e oF oF
= _EBO <Vx‘g;—vyg};' 3 (BOb)

where BO denotes a constant applied static magnetic field.

Suppose that a solution of Eq. 30a is looked for in the form:

f(VX)Vy;VZ:E) = g(uz)h(VX,Vy,ﬁ) ’ (51)

where
- SR | - 2
g (uZ ) - gO exp < 2KTez (uZ uO ) >

in which g, is an arbitrary constant determined by the normalization of
the distribution function. TeZ and u  are constants which correspond
respectively to the temperature and directed velocity (or drift velocity)

along the z-axis. Upon substitution of Eq. 31 into Eq. 30a the following

set of equations is obtained:

EBv~a—h—-v%——h =(EE-Q—h(—1—(<D-vV—vV-VV) (32a)
m o\ X LV y ov KT at 0z X X vy
y x ez
and
av av
oh , e x ©oh e y oh eh d
+ = == = = - - - -
0t m adt 5vx Th & avy (KTeZ) at (@ =gV, - Vyly vyvﬁ ’

(320)
which can also be written in terms of the electromagnetic fields as follows

(using Egs. 12a and 12b):
3n -ma

oh
BO<§y 5;; -V S/ T KT h (EZ + va - v.B ) (33a)

ez ¥ yx
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and
oh _ e oh e dh  -eh
5 5% oy, “nlxdv,  TL) L R O

A possible general solution of Eg. 33a can be written as

follows:
B(Evevy) = b (6ve + ¥ (v,,vo8) (34)
where
mu
Y(vx,vy,é) = exp [ (KT;;7§; E 0 +vB + vyBi)]
and

V.
6 = tan_l <l> J
v
X

in which hO is to be determined by substituting Eq. 34 into Eq. 33b. For

convenience of calculation Egs. 33 and 34 are converted into cylindrical

coordinates in velocity space by letting

= ) = i ?] .
. v, cos and vy v, sin (35)

In order that Egq. 33%b be satisfied identically with respect to 6 for h given

by Eq. 34, the following conditions must be satisfied:

dEZ

& - o , (36a)
Bho ek
st TRT h, = 0 , (36b)

B oh B u uv dB
o __& X ° .er _X _ o8B } h = 0 6
(Dc< §X> dv KT [( B > < v ) E, w ag roy | Po (36c)
0 r ez e} r c

and




=16 -

B, aho . By u u v, dB
'mc<]_3_>5v T KT |:<B_><V_->Ez- w_ 4t +Ver:iho = 0
o r ez o r

c
(364)
where w, = eBo/m is the electron cyclotron frequency.
If ho is chosen as
ep(t) mvi
2 = - —_—
By (8, vy + Vy) = eXP\ KT KT_| > ’ (537

where ®{t) is related to EZ by Eq. 18b, then the function h given by Eq. 3k

satisfies Egs. 33. Thus the distribution function for electrons can be

written as follows:

(v2 + v3)

_ _om _ 2
f(vx,vy,vz,é) T D &XP [2KT (uz uoe) | X y

__m
2KT
ez e

u
e e oe
6 +vB +vB 3
" (KTez)+ KTex< wc> (Ez x Ty y>:| ’ (28)

where u, = (vz - vo) and n_ is an undetermined constant of normalization,
The distribution function for ions can be obtained by replacing

e, m, ,, T and n by -e, M, -0, T. and n, respectively in Eq. 38:

= M _ - 2 _M 2 2
F(Vx’vy’vz’g) = Dy exp [ srr (8 - 9s)” mmm Ot Vy)
iz il
= - Soi
KT, * KT, < 9 > (B0 + v, B, * VyBy)} - (39)
12 1z C

Since the form of the distribution functions has been determined, the
integrals of Eqs. 13a-d can, in principle, be evaluated. The calculation
of these integrals involves error functions which can be treated
approximately under the conditions illustrated below. For the appropriate

approximation these integrals can be evaluated analytically.




e o

-17-

For convenience, suppose that a factor ® is defined as

mu> T /B
E — —é

= &Ly T <B > ’ (40)
z V4 o]

where Bl denotes the magnitude of the transverse magnetic field and BO

denotes the longitudinal static magnetic field. The first factor represents
the ratio of the directed velocity (or drift velocity) in the z-direction
to the thermal velocity in the same direction, and the second factor is the

ratio of the thermal velocity in the transverse direction to that in the

longitudinal direction. Then for

53 << 1 (k1)

the components of the electronic current density are given as follows

(see Appendix A for details):

i = K +pb +pb +pb2+pbb +pb2

Iy l(po P Px TPy TR O TPy TPy y) ’

s = X +qb_+qgb +qbZ+qgbb +qb?

Jy l(qo ql X q2 Yy qa x  dgx y q5 Y) ’

5. = K (L +2b_+1Lb +Lb2+Lbb +11p2) , (42)
z Mo ix T2y Tax  Ta4axy sy

where



o
il

o'
(]

)

ons ed(§)
K = e - e exp
L 28 on KT ’

ez

B

A

B
o

s _ L (32+219

L o

b = y P = s = = —= )
© (s2+1) 1 i s(s2+h) 2 N (s2+4)
b = 3(s2+7)s02 b = -6(s%+3)0® _ 6502

3 (s241)(s2+9) % (s241)(s249) 5 (s241)(s249)
g = —= S . g

o (s241) 1 Jr (s24h) 2 Jx s(s2+k)

_ =3(sB43)0® q - 12s0° . - -180°
3 (R4 (s249) 4 (s241)(s249) s (s2+1)(s249)

’ _ -2fsz+2)02 ’ _ ho2 | _ Lo2
= , =
3 s (s2+4) 4 (s2+k4) S s(s2+k)
2 m Yoe
& - 2KT v % T KT <B >Ez ’
ez

\/ 2KT \/ ? B (Vo+uoe) (3)

in which Ez is the z-directed electric field, and Ne is the electron

concentration at the reference point g = EO with Ez = 0,
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On the other hand, the components of the ion current density have
the same form as the electron current density, namely Egs. 42, and the

coefficients now take the following form (the subscript i is introduced

to denote the fact that the gquantity is associated with ions):

\/—- on s,
K . eNi T 1l -e * ex _ ep(t)
11 2a. on p KT,
i 12

)
S

ons,
i
_ 7 (i-e ~ ep(E)
K = .eNiv:.L < o > exp <; KTiZ s

Fii
2 = M . - M < Yoi > .

. = ) s = »

i 2KTii 1 KTiZ Bo 4

Muy T
= —_— = + .
9 kT, N T.. Vi (v +ugy) (44)
12z 17Z

Since the current densities of electrons and ions have been determined,

with the aid of Eqs. 12a and 12b, Egs. 15a-d can be written as

)%,
(-2) 5 - el i) (158)
"o\ By
< - ;g &k = Ho(in + Jye) (45p)
and 5
dE - — . —
o2/ 4t €.Vs 2 €V o2

In view of the fact that dEZ/dE must be zero as suggested by Eq. 36a, the

right-hand side of Eq. 45c must vanish. In other words, the following

condition must be imposed on the parameters of both ions and electrons:
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J.zi vo;i J.ze vo;e
= |1l = > + = - > = 0 . ()4’6)
V. 2 v 2

1 c e C

Furthermore, since EZ is independent of &, the presence of a uniform static

electric field in the z-direction is permitted in the present analysis.
The electromagnetic fields in the plasma as a function of & can,

in principle, be obtained by solving Egs. 45 with the aid of Egs. 43

and L4 for properly specified boundary conditions. However, Eqs. 45a and

L5b can also be conveniently used to study the effect of the longitudinal

static electromagnetic fields on the transverse dynamic magnetic field as

illustrated in the following section.

IV. BEHAVIOR OF TRANSVERSE ELECTROMAGNETIC FIELDS

Equations Lb5a and 45b can be written as follows with the aid of

Egs. 43 and Lk:

Y P +PX+PY+PX2+PXY +PY2 (47)
ag o 1 2 3 4 5
and
_Q=Q+Qx+Qy+QX2+QXY+QY2, (48)
dt o} 1 2 3 4 s
where
P = (C - C (49a)
, (epn)e ipn,i) )
= - . - )+9b
Qn (Ceqn’e Ciqu,i) s noo= 0, 1, 2; B,hand 51 ( )

Q
il

-1 Q; N 1l - ezjtSi eEo
: 2 i s Vew (5= )e] 0 o0
(2 - v3) T Py "
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2 ons
c = -1 e J;( L-e ° V|- o 3 (kod)
e - (n2 _ V2) (l)c 2ae \ en p KTeZ ’
= o)
e2Ne eBO e2N:.L eB
2 = = 2 = = —
®p = me_ 7 ®e m Qp Me 7 & M (k9e)

in which EO is a constant longitudinal static field present in the system.

Case I. ©Static Electric Field-Free Case (EO =0).
In this case the coefficients P and Q in Egs. 47 and 48 all vanish

except for P; and Q@ which become equal to one another, so that
2

ay _ ax _
T - Pl,OX and ZF = -P Y, (50a)
where
2 2
1 g 0, @ O
P = ——\F == =) - (50b)
1,0 (2 - v3) Ve B % 3
o]

Since the coefficients P are independent of &, the solution of

150
Eq. 50a obviously is a periodic function of £ and can be written as

X = M cos ko(é - §o) and Y = M_sin ko(g - EO) R (51a)

where MO and §o are arbitrary constants and the constant ko’ which

determines the spatial period in the wave frame, yet to be determined,

is given by

k = %P . (51v)

By, e ez _

at * U o 1 - Ty Bx °

4B, ) ©e < i Tez 5 - 0o (52a)
dg uoe / Te.l. Y ’
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which relate the electron parameters to the transverse magnetic field.
The corresponding set relating the ion parameters to the transverse
magnetic field can be obtained by replacing W, Tez’ and Tei with -Qc,

TiZ and Tii in Eq. 52a. Then in order that the fields obtained from these

two sets of equations agree, it is required that

T T
1 ez> 1 ( iz >
— (1 - = = — - . (52v)
M™oe ™ Te1 Muoi ST

Furthermore, since the transverse magnetic field components Bx and B
must satisfy both set (502 ) and set (52a), the following relation-

ship is established:

eB T
p - 0 ( ez > . (52¢)
150 muoe . Tél
Suppose that
N. = N andu = u H (524)
i oi oe

then by using Egs. 50b, 51b and 52b, Eq. 52c can be written as
2 2 2 2 <'Til el
- = —————— P
(e vo) Boeo uoe\ Tiz (MNi) + Tez (mNe) B (52e)

which can also be obtained by equating Pl,o to [eBo/Muoi(l - Tiz/TiL)]'

It is of interest to observe that since & = (z - vot),the form of
solution given by Eq. 5la appears to an observer in a laboratory frame of
reference as a circularly polarized plane wave with a propagation constant
ko and angular frequency w = kovo. The dispersion equation for this

mode of propagation is given by Eq. 52e, which can also be written as
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2,2 2 2.2 2 ( “Opo
(c K - ) = Tk ! B2> ) (52£)
O
where
ATi Ame
po = [MNLL <l + ———T + mNe \_']_ + ——T } B (52g)
1z ez
in which
A\ = - = -
T, (Til Tiz) and ATe (Tel Tez)

On the other hand, Egs. 51 being a parametric representation of a
circle in the X-Y plane suggests that the tip of the transverse magnetic
field vector denoted by the point W(X,Y) describes a circle as the
parameter £ increases. This picture represents the rotation of the trans-
verse field vector about the z-axis as it propagates along the z-axis.
The rate at which the transverse magnetic field vector (or the transverse
electric field) rotates per unit distance in ¢ (in the wave frame) is
given by ko. For example, given w, ko can be determined from Eq. 52f in
terms of the system parameters.

The algebraic signs assoclated with Eq. D1lb denote the fact that
the plasma is capable of supporting both right-hand and left-hand
circularly polarized plane waves. Consequently the electromaghetic wave
propagating in a magnetoactive plasma suffers a Faraday rotation, which

is to be expected. The angle of rotation @O can be determined byz»'3
o = = (k, -k _)a (53)
2 ol ’

where kol and kor denote respectively the wave number of the left-hand
and right-hand circularly polarized waves, and the distance 4 is

measured in a laboratory frame.
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Case II. Longitudinal Uniform Static Field (EO # 0).

Although the set of nonlinear ordinary differential equations (47)
and (48) can be solved numerically for X(£) and Y(&) by a standard
technique such as the Runge-Kutta method, once the values of X and Y
are specified at some reference point £ = éo, it is of interest to
investigate the following differential equation:
P,+PX+PY+P X2 + P XY + P5Y2

=z - 3 , (54)
Q +QX+QY +QX2+QXy+QyY?
O 1 2 3 4 5

which is obtained by combining Egs. 47 and u48.

Suppose that Eq. 46 is satisfied (i.e., dEZ/dé = 0), which is the

case if
s, = s, =8 , o =0 =0 (55a)
and
<’ vo;i eEO VOVe eEO
Ni - . >exp [(KT. >§] = Ne<l- " >exp [-(KT >§} .
c iz c ez
(550)
Then from Eq. 47
o= (c, -¢y) P, . and Q = (c_ - ¢) L . (55¢)

ar | piX,Y 6
dX - q X,Y b (5 a‘)
where
X = + +pX+pX2 +pXY +pY®
p(X,Y) P, *P X *pX+p p XY +p_
a(X,Y) = q +qX +qY +qX®+qXy +q¥® , (56b)
o 1 2 3 4 5
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where P, = pn,e and a, = qn,e are given in Egs. 43 and are independent
of &. The plot of the solution of differential equation (56a) in the
X-Y plane gives the desired information with regard to the variation of
magnitude and polarization of the transverse magnetic field with the
variation of static electric and magnetic fields.
Tt should be noted that from Egs. 43
Op(X,Y) _ 9g(X,Y) (56¢)
Y oX ’
which is the necessary and sufficient condition for Eq. 56a to be an exact

differential equation. Therefore the solution of Eq. 56a can be given as

( p D q q
pX[1+=3%x2+=2v2)+qv{l+2%x%+ 27
SHEN 5P, P, o q, 5q,

P q
+§Lx2+p2xY+2—2Y2 = Cc , (57

where C is a constant of integration which is to be determined by the value

of X and Y at some reference point € = io. For example, if X = 0 and

Y = YO, then C can be given by

q q
c = qY‘+§2Y2+5~5Y (58)

o w

As an illustration Eg. 57 is plotted for a few selected sets of
parameters s and o and shown in Figs. 1 through 6.
In view of the fact that (p3/5po), (ps/po), (qs/qo) and (q5/5qo)

are all less than 02 for an arbitrary value of s, if the condition
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FIG. 1 PIOT OF Y VS. X FOR o = 0.01, s = 0.1, AND Y =0.1, 0.5, 1.0.
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FIG. 2 PLOT OF Y VS. X FOR ¢ = 0.4, s = 0.4, AND Y =0.5, 1.0.
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20

FIG. 5 PLOT OF Y VS. X FOR o = 0.01, Yo =1.0, AND S = 0.1, -O.l.




T —— e

-29-

20

FIG. 4 PLOT OF Y VS. X FOR ¢ = 0.01, Yo

= 1.0, AND s = 0, +0.001, #0.01.
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FIG. 5 PLOT OF Y VS. X FOR s = 0.1 AND Yo = 1.0, WITH o AS A PARAMETER.
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FIG. 6 PLOT OF Y VS.

X FOR s = 1.0, Y_

= 1.0, AND ¢ = 0.01, 0.4, 1.0.
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302(x2 + v3) << 1 (59)

is satisfied, then Eq. 57 can be reduced to the following second-degree

equation:

plXZ +2p XY + quZ +2p X +29Y = 2C , (60a)

which represents a conic section in the X-Y plane. Since

16 o= 1
(2 -pa) = -7 — —/ (60b)
2 172 s2 (52 + L)
which is a negative quantity, Eq. 60a represents a family of ellipses.

The term in (XY) can be made to vanish in Eq. 60a by a rotation of

coordinate axes through an angle T, such that

2p )
tan 21 = —2— = <—s—> . (60c)

(o, -a)

Upon performing this rotation,

>
i

X' cos 1 -Y"'"sint ,

Y = X' sinT +Y' cos 7T

, (60d)
and Eq. 60a can be arranged into the following standard form for an

ellipse:
(' -x1)2 (v -2
©  + Q = 1 , (60e)
2

a b2
o o

in which




where

A'

C

Dl

D! -B!
! —_ 1 - b
X =T Yo 2C!
1 D|2 E|2
2 =AT'_(T"+T+F'> )

= — | = - — sin 21 + s cos T) ) ,
Na \ S s+ 4

- 2 (¢ -5 ;
= J}_(IS > < =1 (2 sin 21 + s cos T)> s

= __;;2___ (sin T +s cos 1) ,
(s + 1)
= ———EL———-(S sint - cos 1) ,
(s® +1)
2
2YO 8 g Y o

= - + - —_— .

s2+1 Nu S (s2 +1b)

The center of the ellipse is located at the point (X' = Xg, Y' = Yé)

and the lengths of the axes of the ellipses are 2ao and 2bo. A typical

plot of Eq. 60a is illustrated in Fig. 7.

The desired information in regard to the transverse magnetic field

vector can be obtained from Fig. 7T; the magnitude and the angle between the

x- and y-components, which specifies the spatial orientation of the

transverse magnetic field vector, are given respectively by (RBO) and ©,

where
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FIG. 7 PLOT OF Y VS. X BASED ON EQ. 60a FOR s # O AND 3%% << 1.
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R = NX2 +Y2 and @ = tan * (

> , (61)

in which X and Y are the coordinates of a point W(X,Y) on the ellipse.

b

In view of the fact that the ellipse of Eq. 60c can be written parametrically

as

X' = X' +a cos { |,
o o

Y 1

1l

Yo+ b_ sin ¢ (62)

where the parameter { is the angle which is to be measured as indicated in

Fig. 7, R({) and ©(f) can be expressed as

R(¢) V[(Xé +a_ cos t)e + (Yé +b_ sin £)e

Y' +b sin £
T + tan—l (’ o o > . (65)

X'+ a cos ¢
o o

1l

a(t)

R(f) is a periodic function of { and has its critical values (maximum
or minimum) when dR/d¢ = 0, which occurs at § = Cc’ such that

a_ sin ¢ Y'+b sin §

o c o ) c

- . (64)

b cos =~ X'+a cos
o c o o c

Once J, s and YO are specified, the quantities Xé, Yg, a, and bO
are all determined so that Eq. 64 can be solved for QC, from which the
maximum and minimum values of R({) can be obtained. Furthermore it should
be noted that as the parameter s approaches zero, the angle of rotation
of the coordinate axes T — -n/L, so that A’ —>(2/'J;50/s, c! ~>(2/‘J;)0/s,
D' — —Nﬁg, E' - -~N2 and F' —>(2/~f;)(o/s)Y§. Consequently both X' and
Y approach zero as of [(-‘J;78)(s/o)] and both a_ and b_ approach Y .

Therefore Eqgs. 63 give
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R(§) = Y = constant and ©(f) =1 + sx + /b , (65)

where ! is an integer, and X and Y can be given as

x(¢) Y cos [E+ (£ + 1/4)xn]

b

Y(¢)

Il

Y_osin [6+ (£ +1/b)n] . (66)

Thus it is observed that as s — 0, the ellipse is gradually deformed
into a circle whose center is located at the origin (X = 0, Y = 0) and

whose radius is equal to a, = Yo'

A comparison of Egs. 51 and 66 suggests that

t = k¢ , forE = 0 . (67)
O (@]

It should be pointed out that Eq. 67 is valid only if Eo = 0. On the other
hand, if Eo is different from zero, but sufficiently small so that the
coefficients P and Q in Egs. 47 and 48 are very slowly varying functions

of E, then it would not be unreasonable to expect that X(t) and Y(£) will
be almost periodic, and to expect the W-point in Fig. 7 to move along the
ellipse as & varies. However, the spatial period in the wave frame is
expected to be different from that in the case of EO = 0. It should be
noted that under the conditions of Eq. 59, Egs. 47 and 48 are reduced to

the following set of linear equations:

i - p +PX+PY ,
atg o 1 2
dX
. + +
3t Q rexTey (68)

in which the coefficients P and Q depend upon £ in the form of an exponential

function: exp [i(eEO/KTZ)g]. For the case where E_ is sufficiently small,
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the solution of Egs. 68 may be expected to be almost periodic and its
period can be estimated approximately by solving Egs. 68 as if the
coefficients P and Q are independent of £. In other words,
l(eEo/KTZ)EI << 1 and exp[i(eEO/KTZ)é] =~ 1. Then through a trans-

formation of dependent variables:

X = X" - ﬂ i 1
L% (s )

Y - Y” + '\/:f- §_ 1 , (69)
T (24 1)

and the set of Eqs. 68 is transformed into the set,

— = AX" +BY" 0
dE 1 1 (702)
and
"
- %%‘ - cxX" +DY" , (7ob)
1 1
where
2
sT + 2 -S -5
= B = — C = el D =
Al ( 2 >Q2 J 1 2 Q2 2 1 2 Q2 2 1 Q2 2
L 1 - &S
o - (Lo (Toc)
2 (52 + 4) l’o
in which condition (55a) has been used and P o is given in Eqg. 50b.
1,

Elimination of Y" from Egs. T0a and 70b yields

d2Xn _ _K2X" s (71&)
aeZ
and elimination of X" gives
azy"
= -K3Y" (71b)

de=2
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where

2

In view of the fact that K® is a positive quantity, the solutions of Egs. Tla

and Tlb are periodic functions of £ in the wave frame and can be written as

X"(g) = Ml cos (K& + Ll) (72a)
and

Y"(E)

M cos (KE +L ) |, (72p)
2 2
whereM , L , M and L2 are arbitrary constants. The constant K is given by
1 1 2

K = #p(s)P , (72¢)
1,0

V (82u+ i) <l -2::“ > ' (1ea)

It should be noted that when (L -L ) = n/2, Eqs. T2a and T2b are
1 2

where

k(s)

the parametric equations of an ellipse. Thus the result is an elliptically
polarized plane wave in a laboratory frame. Furthermore, if KO and Ab
denote, respectively, the values of ko and Wo which are quantities defined
for the case EO = O under the condition stated by Eq. 55a, then the wave
number K, appearing in Egs. 72, and the Faraday rotation A for the case

E0 =~ O can be expressed as follows:

%; = u(s) and %; = u(s) , (73)
where the factor u(s) is defined in Eq. 72d. Since p(0) equals unity
and for s <0 it decreases as Isl increases, Egs. T3 suggest that the
Faraday rotation angle decreases while the wavelength A = 2n/K increases

with an increase of Isl.




V. DISCUSSION OF RESULTS

For a properly constructed solution of the nonlinear Boltzmann-
Vlasov equation in a moving frame of reference, sets of ordinary
nonlinear differential equations governing the components of the vector
and scalar potentials have been derived; Egs. 17, for the case where the
static electric and magnetic fields are absent, and Egs. 45 for the
case where static electric and magnetic fields are present in the plasma.
The numerical analysis of these sets of differential equations is in
progress and will be discussed in a future report.

It is of interest, however, to consider a few special cases. For
example, in the case of no static fields, with Tex =T =T and
Tix = Tiy = Til and under the condition of electrical neutrality, Egs. 17
are simplified considerably and could lead to a circularly polarized plane
wave solution (Egs. 27) with a dispersion relationship given by Eq. 29b.
It should be observed that for a real k, w can be real or complex,
depending upon whether (ck)® is greater or less than wi exp (QVi/E), which
suggests the possibility of instabilities in the system. It should also
be noted that if Tel % Tez’ the wavelength of the transverse electromagnetic
wave, A = 2n/k, does depend upon the amplitude VO of the wave and is obvious

from Eq. 29b. On the other hand, if QV§/2 << 1, then A becomes independent

of the wave amplitude, and Egq. 20b becomes
®k® - w? = o . (T4)

Moreover if T, << T, and T << T _, then from Eqs. 25 T, /T _ = Q%/0?
it iz el ez iz/ Tez ' p

so that wi = -(w2+Q§). Furthermore if the ion motion can also be neglected,

-39-
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i.e., T, << T, then ws = 1Q§. Thus Eq. T4 is reduced to a familiar
linear dispersion eq_uation9 for transverse plasma oscillations when
no static magnetic field is present.

It should be noted that the set of nonlinear differential equatilons
(47) and (L48), governing the behavior of the transverse magnetic field,

when there exists longitudinal magnetostatic and electrostatic fields,

is derived under the condition that 52 << 1, where & is defined in Eq. 40.

8 can also be written as & = oR, where ¢ = 'Jmui/QKTZ NﬁfL/TZ and

R = (B¢/Bo)' The condition 8% << 1 is not a severe restriction and
permits consideration of a wide range of system parameters. However,

it should be pointed out that this condition was considered mainly
because of mathematical convenience in illustrating the method of
analysis. If it were not imposed then the higher-order terms in bx and by
would have appeared in the current density expressions of Egs. 42 as

well as in Egs. 47 and 48.

It has been shown that in the absence of a longitudinal static
electric field the plasma can support circularly polarized plane waves,
whose dispersion relation is given by Eq. 52f under the condition of
electrical neutrality. For a plasma whose mean velocity along the z-axis
vanishes (i.e., v = 0, or u, = —vo) and which exhibits a small temperature
anisotropy, ATe << Tez and ATi << Tiz’ Py given in Eq. 52g, becomes
(MNi + mNe), which is the mass density of the plasma. Consequently Eq. 52f

can be written as

c2x2 B2
2 o, (75)

2 —
= ——— 3 v, 6=
/ C2> A “OpO
1 + -
\ v2
A

w




|
ﬁ

Iy

1
where vy is the Alfven velocity and Eq. 75 is recognized as the dispersion
t
relation for the Alfven wavesZ?l,

On the other hand, from Egs. 20b and 51b,

® Yoe ( Niuos Tiy  Tel
22 _ 2 = 2 S == 2 - - .
¢k @ w <v >(Dp[ N u > T, T J (762)
o) e oe ez

c - iz

For a plasma under the condition of quasi-electrical neutrality i.e., Niuoi

Neuoe’ and vanishing mean velocity along the z-axis (i.e., v = 0), the

refractive index n can be expressed as

2 - 17 mf) ( e - eu (76b)
no= ww_ T, T ’
C 1z ez

which 1s recognizable as the dispersion relation from magnetoionic theory
for w << 9, < w,. Thus it appears that Eq. 52f or Eq. 76a may be
profitably applied to the investigation of some ionospheric phenomena,
such as VLF emissions and whistler mode propagation in ionospheric

plasmas.

It has also been shown that for the case where a longitudinal static
electric field is present (i.e., B # 0), the magnitude of the transverse
magnetic field no longer remains invariant, as in the case of Eo = 0, but
varies with distance in the wave frame. Under the condition 32 << 1, the
x- and y-components of the magnetic field vector are related by Eq. 57 and
the tip of the magnetic field vector describes the curves as illustrated
in Figs. 1 through 6. However, under the small-amplitude condition of
Eq. 59, except for extremely small values of o, the locus of the tip of
the magnetic field vector describes an ellipse as shown in Fig. 7. It is

observed that the magnitude of the normalized transverse magnetic field
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vector R = (BL/BO) varies between its minimum and maximum values in a

wave frame as £ varies, and that as s - 0, the ellipse is gradually
deformed into a circle. Furthermore, under condition (59) for the region
[eEoé/kTZI << 1, it is shown that the solution of Egs. 47 and 48 is a
periodic function of &, as given by Egs. T2 and the tip of the magnetic
field vector describes an ellipse in a wave frame. Thus it is observed
that the transverse electromagnetic wave in the presence of a weak

static longitudinal electric field can propagate along the static
longitudinal magnetic field as an elliptically polarized plane wave with
the magnitude of the rotating magnetic field vector varying periodically
with distance z. Therefore the amplitude and phase of a circularly
polarized plane wave propagating in a magnetoactive plasma is modified

by the presence of a longitudinal static electric field. The modification
of the wavelength A and the Faraday rotation angle, A, due to a weak
static electric field EO is given in Eqs. 73 and is valid for an

arbitrary value of the parameter s. An examination of Egs. T3 reveals
that the Faraday rotation angle A tends to decrease, while the wavelength
A increases, with an increase of Isl. Tt is of interest to note that since
s is defined as [(muo/KTZ)(EO/BO)], an increase in BO will cause |s|

to decrease, A to increase and A to decrease, which is considered

reasonable.




APPENDIX A. DERIVATION OF EQS. 42 AND 43

b
b
I
; ! For the electron distribution function given by Eq. 38, the electron
;F current density components may be given as

N ax
b 6
i ‘jx = LO f Ig(e) cos 6 es aé ’
] 0
o
: on
e
jy = 1, f I2(9) sin 6 °7ag
0
on
sf
j, = L u/\ I (8) ea0 (A.1)
0
where
© - sgg (V,7V) KT
L = -n e ex P fe ez dv =—~/-7; eznex eP
o e P KT z m e” TP \xT ’
ez’ ez
m \2
w 2KTez(vz v) 3
- Ll = -neexp<KTCp>vae dv = VLO s
1 [ 7" %
X ’ o0
m
l Il(9) = f V_ exp [- 5RT <(vr—[3)“ -52>] dVr P
! S el
{ [o0]
o = _ m _R)2 _ g2
L0 = [ Zew |- g2 (2 - 6] e,
o el
m uo
G <:E—'> E,
ez o
and

43
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T_L u
(———e ><—o>(B cos 8 + B sin 6)
. T B X y

ez o

T B
el 1

uo<———T ><B>cos(®-6) s
ez o

™

N
(o5}

p—
ili

where

. B
B = (B2 +B2 and © = tan_l< —1> ; (A.2)
1 X N'g BX

I (8) and I2(6) can be evaluated to give
1

I (9) = ——l—— [l + \/?(7872 erfe (7)] )
1 2a2
L@ < lme (e e ] (a.3)
2 2a3 2 .

where

325<§k%1_>) 75(3'6):
el

erfc (7) = f eVat = [ - ere( (A1)

in which erf(y) is the usual error function.
Tt is well known that the function erf(y) can be expanded into a

power series in 7 (e.g., see Dwight?®, p.129):

2 4 (S)
awr ) - B(a- e i), e
- 113 215 57

For cases in which 7® << 1 (e.g., 7:; = 0.01, which is equivalent to

7, = 0.217), for y < 7y




-hs-

! erfe (7) = [1 -%(1 - 1;-)]

so that I (6) and I (6) can be approximated as
1 2

I (9) o ——l (1 + Ny - 272> ’
1 28.2 N

j I(6) ~ —= <1 LB 572>

P 2 LgS N

Since ¥ can also be written conveniently as

7 = B®cos (B -0) |,
where > _
5 = Moe Tel ( ?i
TN 2KT oy T . B ?
ez ez " o

the condition 72 << 1 implies that
33 <« 1
F On the other hand 7 can also be written as

N
‘ Y = (aT)(BX cos 6 + By sin 6) ,

TE(T_%>(‘19>.
\ Tez A Bo

where

(A.5)

(A.6)

(4.7)

(A.8)

(A.9)

Substituting I (6) and I (6), given by Eq. A.6, into Egs. A.1 and carrying
1 2

out the integration yields
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By substituting the values of Lo and L. into the expressions for K and KIl
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and if the distribution function f is normalized to a constant density Ne,
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Thus Eqs. 42 and 43 are obtained.
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